US009146756B2

a2z United States Patent (10) Patent No.: US 9,146,756 B2
McArdle (45) Date of Patent: Sep. 29, 2015
(54) JAVA MANAGEMENT EXTENSIONS (JMX) 2003/0061247 Al* 3/2003 Renaud 707/205
BEAN CUSTOM SERVICE EXTENSION 2004/0003122 Al1* 1/2004 Melillo 709/246
2004/0168153 Al* 82004 Marvin 717/120
PLUGIN AGENT FOR AN APPLICATION 2004/0230674 Al* 11/2004 Pourheidari et al. .. 709/223
SERVER 2004/0255264 AL* 12/2004 SIMPSON .covorrecrerrecrers 717/100
2005/0261875 Al* 11/2005 Shrivastavaetal. 702/183
(75) Inventor: James Michael McArdle, Austin, TX 2005/0273490 Al* 12/2005 Shrivastava et al. 709/203
(as) 2005/0273667 Al* 12/2005 Shrivastavaetal. 714/38
2006/0026552 A1* 2/2006 Mazzitelli et al. 717/101
3 . : : : 2006/0036715 Al* 2/2006 Ghattu 709/220
(73) Assignee: International Business Machines N
Corparation, Aok, Y (05 o AT e S
3k
(*) Notice: Subject to any disclaimer, the term of this 2008/0127076 AL* 52008 MeArdle ..o 717120
patent is extended or adjusted under 35 * cited by examiner
U.S.C. 154(b) by 2770 days.
(21) Appl. No.: 11/563,331 Primary Examiner — Marina Lee
(22) Filed: Nov. 27, 2006 (74) Attorney, Agent, or Firm — Jeffrey L. Streets
(65) Prior Publication Data (57) ABSTRACT
US 2008/0127076 Al May 29, 2008 . .
ugin agent that interfaces between an ean server
A IMX plugin agent th: rfaces b MB
(51) Int.CL and a JMX plugin directory. The IMX plugin agent simplifies
GO6F 9/44 (2006.01) development and modification of MBeans by automating reg-
GOG6F 9/445 2006.01 istration and unregistration of MBeans with the MBean server
2
(52) U.S.CL and enabling organization of multiple versions of an MBean
CPC ... GO6F 9/44526 (2013.01); GO6F 9/44536 within a common JMX plugin directory. A generic JMX
(2013.01) plugin agent scans a JMX bean plugin directory looking for
(58) Field of Classification Search MBeans to create and register with the MBeanServer. Pref-
CPC oo GOGF 9/44526; GOGF 9/44536 erably, each MBean has its own subdirectory that indicates
USPC i 717/120 the MBean version and includes a plugin.xml file that
See application file for complete search history. describes any necessary configuration parameters. The IMX
. plugin agent makes it easier to deploy JMX beans to multiple
(56) References Cited WAS instances and even provides for plugin dependency and

U.S. PATENT DOCUMENTS

7,546,605 B1*
7,577,731 B2 *

6/2009 Krugeretal. 719/316
8/2009 Freyetal. ... 709/223

version control.

14 Claims, 3 Drawing Sheets

~30
APPLICATION SERVER 32 32b
WAS INSTAN . VAS INSTANGE 2
20, WAS INSTANGE 1 aan | [was msTancE 340
v JMKAGENTT [MKAGENTZ
i Ceervices 30 | SERVICES
BROWSER Pl d | BN
T —p IMX 364~ . } RIve 36~
T conmecrorsy || MBEAN T 8197 conneeTorgy || MBEAN
28~ | | erotocoL §ISERVERE B protocol (i SERVER
T RemOTE ADAPTERS |] 1 aoaeters i
IMANAGEMENT \REGISTRY l 1 REGISTRY
APPLICATIONS 1

SMXPLUGIN DIRECTORY

MBEANT - ¥1.00.00.00
| - PLUGIN. XML
| —MBEAN - ¥1.00.00.00
- PLUGIN. XML
- MBEANS - V1.00.00.00
~ PLUGIN.XML

U.S. Patent Sep. 29, 2015 Sheet 1 of 3 US 9,146,756 B2

~10
29~ APPLICATION SERVER
WEB 12
BROVSER VX AGENT Y
2% SERVICE
X
CONNECTORS/ | po————m—=ty
PROTOCOL MBEAN | 22
28~ | ADAPTERS e o tREGESTRYE
e P —
MANAGEMENT 16 o8 N 20
APPLICATIONS MBEAN | MBEAN? MBEAN?
FIG. 1 (RESOURCET)
/30
AFFLICATION SERVER oo 32
AS N f NAS INSTANCE 2
20 WAS INSTANGE 1 34 | [WASSTANCE ey
v VX AGENT 1) VX AGENT 2
BROWSER "
L IMX MBEAN et X E\Jf;;gEAN
CONNECTORS/ | ¥ T CONNECTORS/ [
26~ | ||| erotocoL | ISERVERE \Mf. || protocoL i SERVER
REMOTE ADAPTERS | — T ||}’ ADAPTERS
MANAGEMENT REGISTRY E REGISTRY §
APPLICATIONS —

40~ Jmx PLUBIN AGENT

42

JMX PLUGIN DIRECTORY
L MBEANT - V1.00.60.00
- PLUGIN. XML
— MBEANZ - v1.00.00.00
- PLUGIN.XML
——MBEAN3 - V1.00.00.00

- PLUGIN. XML

FiG. 2

U.S. Patent

78

IDENTIFY NEXT
MBEAN [N THE

Sep. 29, 2015

52
‘/;\F’PUCATEQN SERVER
_ STARTUP
¥
IDENTIFY JWX
PLUGIN DIRECTORY

e,

Sheet 2 of 3

US 9,146,756 B2

fﬁﬁ

~54

82
(OPTIONAL WAIT

Vv
IDENTIFY MBEAN

¥

PERICD

PLUGIN DIRECTORY

4

READ PLUGIN.XML FOR
THIS MBEAN FOR NECESSARY
CONFIGURATION PARAMETERS

POES
PLUGIN. XML
INDICATE
DEPENDENCY

SN B8
L DOES ™,

62

SCAN FOR THE
DEPENDENT MBEANS

EOUND
YES “nepenpent \NCL.¢

70

7 PLUGINXML ™.
< INDICATE VERSION
CONTROL

YES

APPLY RULES TO
IDENTIFY THE APPROPRIATE
MBEAN VERSION

NO

74

REGISTER THE MBEAN

WITH THE JMX AGENT
¥

78

FiG. 3

YES /ApDimonaL
MBEANS ¢

YES

/\<-3@
y AUTONOMIC .

FEATURE
ACTIVATED
?

U.S. Patent Sep. 29, 2015 Sheet 3 of 3 US 9,146,756 B2

=7 swpLucing

— A

-
e

II077 MBEAN - V1.00.00.00
- PLUGIN.XML

92N MBEANT - V1.00.00.01
- PLUGIN XML

- |
93\5_ . MBEANT - v2.00.00.11 \

- PLUGIN XML ? FIG. 4
Y\ MBEAN2 - V1.00.00.00 /
- PLUGIN XML

95\ MBEANZ - V1.00.00.01
- PLUGIN.XML

MBEANS - V1.00.00.10
- PLUGIN. XML /

US 9,146,756 B2

1

JAVA MANAGEMENT EXTENSIONS (JMX)
BEAN CUSTOM SERVICE EXTENSION
PLUGIN AGENT FOR AN APPLICATION
SERVER

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present invention relates to use of JMX beans in an
application server environment.

2. Description of the Related Art

JAVA (a trademark of the Oracle Corporation) is an object-
oriented language. JAVA programs are constructed using one
or more objects which communicate to accomplish some
task. Software objects are similar to real world objects in that
they have both state and behaviors. The state of an object is
stored in variables and their behaviors are implemented with
methods. Variables are named records in which you can store
data for later use. Methods are named pieces of code that
implement behaviors the object is capable of.

JAVA programs may include many software objects of the
same basic kind. In object-oriented terminology, each imple-
mentation or manifestation of the object is an “instance” of
the generic class of the object. Each instance of the object has
its own state, but every instance has the same methods defin-
ing their behavior. The object instances are constructed from
a software blueprint, referred to as a “class definition,” which
is written by a programmer. Accordingly, a class must declare
instance variables to hold the object’s state and include
instructions for the methods that the object implements to
form the behavior. In this manner, a class definition can be
used to create objects of that class by instantiating them.
When created, each object has memory allocated to it to hold
its instance variables (i.e., its state). The state of each objectis
separate from that ofthe others. After an object is created, you
can call its instance methods to have it do something.

In addition to instance variables and instance methods, the
class can define static variables and static methods. Static
variables are not duplicated in each instance. They store prop-
erties that belong to the class as a whole. Each instance of the
class will get the same value when accessing a static variable.
Collectively, instance variables and static variables are
referred to as member variables because they are members of
the class.

A JAVA object that represents a resource to be managed,
such as an application, device or service, is referred to as a
“managed bean” or simply an “MBean.” An MBean has a
management interface consisting of the named and typed
attributes that can be read and written, the named and typed
operations that can be invoked, and the typed notifications
that can be emitted by the MBean. For example, an MBean
representing an application program’s configuration could
have attributes representing the different configuration
parameters, such as a cache size. Reading the CacHESIZE
attribute of the MBean would return the current size of the
cache. Writing CacHeSizE would update the size of the cache,
potentially changing the behavior of the running application.
An operation such as “save” could store the current configu-
ration persistently. The MBean could send out a notification
such as CoNFIGURATIONCHANGEDNOTIFICATION when the con-
figuration changes.

MBeans can be standard or dynamic. Standard MBeans are
JAVA objects that conform to design patterns derived from the
JavaBeans component model. A standard MBean exposes the
resource to be managed directly through its attributes and
operations. Attributes are exposed through “getter” and “set-
ter” methods. Operations are the other methods of the class

10

20

35

40

45

55

2

that are available to managers. All these methods are defined
statically in the MBean interface and are visible to a JIMX
agent through introspection. This is the most straightforward
way of making a new resource manageable. A dynamic
MBean is an MBean that defines its management interface at
runtime. For example, a configuration MBean could deter-
mine the names and types of the attributes it exposes by
parsing an XML file.

An MBean must be registered in a core managed object
server, referred to as an “MBean server,” before the MBean
can be used. An MBean server acts as a management agent,
runs on most devices enabled for the JAVA programming
language, and is a repository of MBeans. Each MBean is
registered with a unique name within the MBean server.
Other objects or application programs do not access an
MBean directly, but rather access the MBean by name
through the MBean Server.

There are generally two ways to create an MBean. One is to
construct a Java object that will be the MBean, then use the
REGISTERMBEAN method to register it in the MBean Server. The
other is to create and register the MBean in a single operation
using one of the cReaTEMBEAN methods. An MBean can even
perform actions when it is unregistered from an MBean
Server if it implements the MBEaANREGISTRATION interface.

JAVA Management Extensions (JMX) technology pro-
vides a JMX specification that defines an architecture, the
design patterns, the APIs, and the services for application and
network management and monitoring in the JAVA program-
ming language. The IMX specification defines a JIMX agent
that manages resources instrumented in compliance with the
specifications. A JMX agent includes an MBean server,
MBeans that have been registered with the MBean server, and
a set of services for handling MBeans. In this way, JMX
agents directly control resources and make them available to
remote management applications. JMX technology also
defines standard connectors, known as “JMX connectors,”
that provide access to JMX agents from remote management
applications. JMX connectors using different protocols pro-
vide the same management interface. Hence a management
application can manage resources transparently, regardless of
the communication protocol used. JMX agents can also be
used by systems or applications that are not compliant with
the JMX specification but which support IMX agents.

FIG. 1 is a schematic diagram of an application server 10
having a JIMX Agent 12 for managing resources 17, 19, 21.
The IMX Agent 12 includes an MBean server 14, a plurality
of MBeans 16, 18, 20 that are identified in a registry 22, and
services 24 for handling the MBeans. The IMX Agent 12 also
includes JMX connectors and protocol adapters 26 that
enables access to the IMX Agent 12 via remote management
application 28 and web browser 29.

While the use of MBeans provides numerous program-
ming benefits, the programmer is still faced with the chal-
lenge of keeping the MBeans organized. This organizational
challenge is greatest when modifying an existing MBean,
since the original MBean must be unregistered and removed
from the MBean Server and a modified MBean must be
copied to the MBean Server and registered. It may also be
necessary to save the original MBean in case the modified
MBean does not work as intended and it becomes necessary
to revert to the original MBean. It should also be recognized
that numerous MBeans may be modified over time during the
development of a program.

Therefore, there is a need for improved methods and sys-
tems for managing MBeans. It would be desirable if the
methods and systems simplified the development and modi-
fication of MBeans. Most desirably, the methods and systems

US 9,146,756 B2

3

would simplify registration and unregistration of MBeans
and provide improved organization for maintaining regis-
tered and unregistered MBeans.

SUMMARY OF THE INVENTION

The present invention provides a method and a machine-
accessible medium containing instructions, which when
executed by a machine cause the machine to perform opera-
tions in accordance with the method. The method comprises
identifying a JAVA MBean in a JMX plugin directory having
aplurality of versions of the MBean, and registering the latest
version of the MBean with an MBean server. The method may
further comprise creating an instance of the registered version
of the MBean. Optionally, the method may include continu-
ously scanning the JMX plugin directory for new versions of
the MBean. The method also preferably includes identifying
MBeans that the MBean depends upon, and determining
whether the dependent MBeans are present in the IMX plugin
directory.

In one embodiment, the method identifies a new version of
the MBean, unregisters the current version of the MBean
from a plugin registry, and registers the new version of the
MBean with the plugin registry. Optionally, the MBean ver-
sion is incorporated into the name of a subdirectory contain-
ing a plugin.xml file for the MBean version.

In another embodiment, the method may further comprise
instantiating the MBean for each of a plurality of instances of
an MBean server, wherein each instantiated MBean is created
from the same JMX plugin directory. Preferably, the plurality
of MBean server instances are each associated with an
instance of an application server program on a common web
server.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a schematic diagram of an application server
having a prior art JMX Agent capable of managing one or
more resources.

FIG. 2 is a schematic diagram of an application server
having two Websphere Application Server (WAS) instance,
where each WAS instance has a IMX Agent with an MBean
server in communication with a JMX plugin agent in accor-
dance with one embodiment of the present invention.

FIG. 3 is a logic diagram of a method performed by one
embodiment of a JMX plugin agent in accordance with the
present invention.

FIG. 4 is a schematic diagram of a JMX plugin directory
having multiple versions of some MBeans.

DETAILED DESCRIPTION

The present invention provides improved methods and sys-
tems for managing MBeans. The functions and components
of the invention are preferably embodied in a JIMX plugin
agent that interfaces between an MBean server and a JMX
plugin directory. The IMX plugin agent simplifies the devel-
opment and modification of MBeans by automating registra-
tion and unregistration of MBeans with the MBean server and
enabling organization of multiple versions of an MBean
within a common JMX plugin directory.

A generic JMX plugin agent scans a JMX bean plugin
directory looking for MBeans to create and register with the
MBeanServer. Each MBean preferably has its own subdirec-
tory that indicates the MBean version and includes a plug-
in.xml file that describes any necessary configuration param-
eters. The JMX plugin agent makes it easier to deploy JMX

20

40

45

50

4

beans to multiple WAS instances and preferably even pro-
vides for plugin dependency and version control.

In one embodiment, the IMX plugin agent is preconfigured
into an application server environment, such as the WEB-
SPHERE Application Sever (WAS) (Websphere is a trade-
mark of International Business Machines Corporation,
Armonk, N.Y.) as a custom service extension. Upon WAS
startup, the IMX plugin agent scans an end user configurable
JMX plugin directory for MBeans to create and register with
the WAS instance. Optionally, the MBean plugin.xml file
provides dependency and version control information so that
the JMX plugin agent can verify that the necessary support
classes are present and that the latest version of a given plugin
is going to be used.

Two separate versions of the same named MBean plugin
may be present in the same JMX plugin directory and the
JMX plugin agent will identify which of the MBeans of the
same name have the highest version number. Accordingly, a
system administrator can simply pull or disable a newer ver-
sion of an MBean either by renaming the plugin.xml file or
removing the newer version of the MBean from the JMX
plugin directory, so that the JMX plugin agent would select
the previous version of the MBean.

Autonomic strategies may also be employed wherein a
continuously running JMX plugin agent periodically scans
the JMX plugin directory looking for new versions of any
MBeans. Upon finding a new version of an MBean, the JMX
plugin agent will unregister the currently running version of
the MBean and registering the new MBean without the need
to restart WAS. The JMX plugin agent also allows the same
JMX plugin directory to be used by multiple WAS instances
so that a new version of an MBean is made available in all
associated WAS instances.

FIG. 2 is a schematic diagram of an application server 30
having two Websphere Application Server (WAS) instances
32a, 325, where both WAS instances have a IMX Agent 34a,
345b with an MBean server 36a, 365 in communication with a
JMX plugin agent 40 in accordance with one embodiment of
the present invention. The JMX plugin agent 40 manages the
JMX plugin directory 42 by scanning the MBean subdirec-
tories to identify the highest version of a named MBean. The
named MBean having the highest version number is regis-
tered in a registry of the respective MBean servers 36a, 365.
If the registry includes a previously registered MBean of the
same name but lower version number, then the lower version
MBean is unregistered. However, according to the invention
it is not necessary to remove the lower version MBean from
the IMX plugin directory. Optionally, the IMX plugin agent
may also provide dependency checks for the MBeans that it
registers.

FIG. 3 is a logic diagram of a method 50 performed by one
embodiment of a JIMX plugin agent 40 (See FIG. 2) in accor-
dance with the present invention. Following application
server startup in the first state 52, the IMX plugin directory is
identified in state 54. In state 56, at least one named MBean is
identified within the JMX plugin directory. The plugin.xml
file for the MBean is then read, in the next state 58, to identify
any necessary configuration parameters. In the next state 60,
it is determined whether the plugin.xml file indicates depen-
dency upon other MBeans. If the named MBean indicates no
dependencies, then the method continues to state 68. How-
ever, if the named MBean indicates dependency upon one or
more other MBeans, then, in state 62, the plugin directory is
scanned to verify the presence of the dependent MBeans. If
the dependent MBeans are not found in state 64, then there is
an error 66. If the dependent MBeans are found in state 64,
then the method continues to state 68.

US 9,146,756 B2

5

In state 68, the IMX plugin agent determines if the plug-
in.xml file indicates that version control rules should be fol-
lowed. If version control rules are not to be applied, then the
method continues to state 74. However, if version control
rules are to be applied, then the version control rules are
applied, in state 70, in order to identify the appropriate
MBean version to utilize. In accordance with the foregoing
embodiments of the invention, version control may be gen-
erally used. Optionally, the plugin.xml file may simply be
allowed to override the version control that the IMX plugin
agent will otherwise apply. Further still, the JMX plugin agent
might be configured to always apply version control without
regard to the configuration parameters of the plugin.xml file.
If'the identified version of the MBean is not found in the IMX
plugin directory, then there is an error 66. If the identified
version of the MBean is found in the JIMX plugin directory,
then the method continues to state 74. As described above, a
JMX plugin agent that registers the highest version of a
named MBean will find the named MBean, so long as there is
at least one version of that named MBean in the JMX plugin
directory.

In state 74, the identified version of the named MBean is
registered with the MBean server that is part of the JMX
agent. Then, in state 76, it is determined whether the JMX
plugin directory includes any other MBeans. If state 76 iden-
tifies that there are additional MBeans in the JMX plugin
directory, then the method continues to state 78 to identify the
next MBean in the plugin directory. Steps 58-76 are then
repeated for this next MBean. When state 76 determines that
there are no more named MBeans in the IMX plugin directory
that must be registered, then the method continues to state 80.
If state 80 determines that an autonomic feature is active, then
following an optional wait period 82, the method returns to
state 56 to identify new MBeans or modified versions of a
named MBean. Alternatively, if state 80 determines that an
autonomic feature is not activated, then the method ends in
state 82.

FIG. 41is a schematic diagram of a JIMX plugin directory 90
having multiple versions of some MBeans. The MBean
named MBeanl has three versions in directory 90, where
each version of MBean 1 is in a different subdirectory 91, 92,
93. As shown, MBean1 version 2.00.00.11 in subdirectoy 93
has the highest version number of all the MBeans of the same
name. Accordingly, the IMX plugin agent would register this
version of MBean1 with the MBean server. In a similar man-
ner, the directory 90 includes two version of MBean2 in
separate subdirectories 94, 95, such that MBean2 version
V1.00.00.01 would be registered. Subdirectory 96 contains
the only version of MBean3 in directory 90, such that
MBean3 version v1.00.00.10 would be registered. In accor-
dance with the invention, if the subdirectory 93 containing the
highest version of MBeanl were deleted or otherwise
removed from directory 90, then MBeanl version
v1.00.00.01 would then become the highest version of
MBeanl and MBean1 v1.00.00.01 in subdirectory 92 would
be registered in place of MBean1 v2.00.00.11 of subdirectory
93.

Alternatively, the version information for a given named
MBean may be contained in the plugin.xml file or other file
associated with the MBean. It is not necessary that the version
information be provided in a subdirectory name as shown in
FIG. 4. It is sufficient that the JMX plugin agent can find and
read the version of the MBean.

The terms “comprising,” “including,” and “having,” as
used in the claims and specification herein, shall be consid-
ered as indicating an open group that may include other
elements not specified. The term “consisting essentially of,”

35

40

45

65

6

as used in the claims and specification herein, shall be con-
sidered as indicating a partially open group that may include
other elements not specified, so long as those other elements
do not materially alter the basic and novel characteristics of
the claimed invention. The terms “a,” “an,” and the singular
forms of words shall be taken to include the plural form of the
same words, such that the terms mean that one or more of
something is provided. The term “one” or “single” may be
used to indicate that one and only one of something is
intended. Similarly, other specific integer values, such as
“two,” may be used when a specific number of things is
intended. The terms “preferably,” “preferred,” “prefer,”
“optionally,” “may,” and similar terms are used to indicate
that an item, condition or step being referred to is an optional
(not required) feature of the invention.

It will be understood from the foregoing description that
various modifications and changes may be made in the pre-
ferred embodiment of the present invention without departing
from its true spirit. It is intended that this description is for
purposes of illustration only and should not be construed in a
limiting sense. The scope of this invention should be limited
only by the language of the following claims.

What is claimed is:
1. A computer implemented method, comprising:
identifying a JAVA managed bean (MBean) in a JAVA
management extensions (JMX) plugin directory having
a plurality of versions of the MBean; and

registering the latest version of the MBean with an MBean
server without removing any previous version of the
MBean from the plugin directory.

2. The method of claim 1, further comprising:

creating an instance of the registered version of the MBean.

3. The method of claim 1, further comprising:

continuously scanning the IMX plugin directory for new

versions of the MBean.

4. The method of claim 1, further comprising:

identifying a new version of the MBean;

unregistering the current version of the MBean from a

plugin registry; and

registering the new version of the MBean with the plugin

registry without removing the current version of the
MBean from the plugin directory.

5. The method of claim 1, wherein the MBean version is
incorporated into the name of a subdirectory containing a
plugin.xml file for the MBean version.

6. The method of claim 1, further comprising:

instantiating the MBean for each of a plurality of instances

of an MBean server, wherein each instantiated MBean is
created from the same JMX plugin directory.

7. The method of claim 6, wherein the plurality of MBean
server instances are each associated with an instance of an
application server program on a common web server.

8. The method of claim 1, further comprising:

identifying MBeans that the MBean depends upon; and

determining whether the dependent MBeans are present in

the JMX plugin directory.
9. A non-transitory machine-accessible medium contain-
ing instructions, which when executed by a machine, cause
the machine to perform operations, comprising:
instructions for identifying a JAVA managed bean
(MBean) in a JAVA management extensions (JMX) plu-
gin directory having a plurality of versions of the
MBean; and

instructions for registering the latest version of the MBean
with an MBean server without removing any previous
version of the MBean from the plugin directory.

US 9,146,756 B2
7

10. The machine-accessible medium of claim 9, further
comprising:
instructions for creating an instance of the registered ver-
sion of the MBean.
11. The machine-accessible medium of claim 9, further 5
comprising:
instructions for continuously scanning the JMX plugin
directory for new versions of the MBean.
12. The machine-accessible medium of claim 9, further
comprising: 10
instructions for identifying a new version of the MBean;
instructions for unregistering the current version of the
MBean from a plugin registry; and
instructions for registering the new version of the MBean
with the plugin registry without removing the current 15
version of the MBean from the plugin directory.
13. The machine-accessible medium of claim 9, further
comprising:
instructions for instantiating the MBean for each of a plu-
rality of instances of an MBean server, wherein each 20
instantiated MBean is created from the same JMX plu-
gin directory.
14. The machine-accessible medium of claim 9, further
comprising:
instructions for identifying MBeans that the MBean 25
depends upon; and
instructions for determining whether the dependent
MBeans are present in the JMX plugin directory.

#* #* #* #* #*

